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1. MARKET GAMES AN1>N§IMPLE GAMES

The characteristic hiction of a market gape has the special 6C € r ,"h

property that the game is totally balanced. Every one of the 2 -1

nonempty subgames which can be formed with the n players of an n-person

market game has a core. No matter what groups.are considered, there

is always some set of imputations at which all gaini-and no other group

can do better for its members. The core leaves room for the bargain

where all subgroups can have their we can go it alone claims satisfied.

When an economy with an efficient price system is modeled as a game,

the resultant game is totally balanced. There appears to be an inti-

mate relationship between the design of an economic mechanism that can

be efficiently run by prices and totally balanced games. J L..C ' 3f '

The price system and the vote appear to be the two characterizing

features of a private ownership democratic society. Yet the key class

of games which characterize voting is considerably different from market

*This work relates to Department of the Navy Contract N00014-77-C-0518

issued by the Office of Naval Research under Contract Authority NR 047-006.
However, the content does not necessarily reflect the position or the
policy oP the Department of the Navy or the Government, and no official
endorsement should be inferred.

The United States Government has at least a royalty-free, non-
exclusive and irrevocable license throughout the world for Government
purposes to publish, translate, reproduce, deliver, perform, dispose
of, and to authorize others so to do, all or any portion of this work.
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games. A simple game has two kinds of coalitions, winning and losing.

Its characteristic function can be described by

0if S is losing
v (S) =I1 if S is winning.

A simple game satisfying the property that the complement of any

winning set is losing is called proper. If it satisfies the condition

that the complement of any losing set is winning, it is called strong.

A strong proper simple game is decisive, there will be no deadlocks or

ties.

A key feature of simple gamnes is that unless there are veto players

present, they do not have cores. This contrasts with market games where

cores are omnipresent.

The price system in a private ownership economy is designed to

allow for efficient decentralized trade, where implicit in the model

is the acceptance of the initial ownership claims as legitimate.

Simple games in contrast with market games characterize communal

decisions. Voting in a democratic society is used to make joint or

communal decisions about public goods and services and the societal needs

and wants as a whole. In fact, the stark win, lose aspect of simple

games is generally not encountered in much of voting. Rules exist to

protect minorities. The strongest of these rules appears to be the veto.

The unanimity game is one where every single individual is fully

protected by being able to exercise a veto. Although on one occasion

the Polish nobility employed the veto in the election of their king,

in general, democratic governments and even committees avoid the unanimity

rule because too many stalemates can be created and in actuality the



speed of decisionmaking may be of importance.

A different way other than the veto for the protection of the

minority is by limitations of the powers of the majority over the

minority. Thus, the "winners, keepers" aspect of the simple game is

modified to limit the winning coalition's ability to exploit the losers.

An important example of such minority protection is in corporate law

where although the control of a corporation goes to a majority when

profits are paid out, they must be disbursed in proportion to shares

held.

In the remainder of this note, both for mathematical simplicity

and ease of exposition, most of our remarks and computations are confined

to symmetric games with or without sidepayments. We use v(S) or al-

ternatively f(s) to indicate the sidepayment characteristic function.

As all coalitions of the same size yield the same payoff, the number

s = ISI can be used instead of the set S

Figure 1 shows five basic symmetric games, whose characteristic

functions are noted below:

0if s< n/2 0o if s < n
(la) f(s) { f (lb) f(s)

if s > n/2 I if s n

o if s < n/2
(Ic) f(s) (ld) f(s) = s/n Vs

s/n if s > n/2

1 if S> n

- if -> s >

(le) f(s) 2 4

if n s > n
2m 2

m - 2m-l

.. .. . ' -- " . .. .' .,,€ ::. .. , . •.. ,
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where mn is the only natural number such that 2 < n/2 M <1. Two of

these gamnes (1a) and (lb) are simple games, (1a) is decisive for n

odd, (lb) is not. Three of these games (lb), (1c) and (Id) are market

games. Game (id) is inessential.

Games (1a) and (le) are, respectively, the simple majority voting

game and the game we call the generalized majority game v 0. Both of

these games have no core. Game (lb) is the unanimity game and every

point in the set of imputations is in the core. Game (1c) is closely

related to the stockholder protection law. A majority is required for

control, but they can only reward themselves in proportion to the size

of their majority. This yields a one point core as can be seen from

f(s)/s < f(n)/n for all s

We suggest that putting the core back into a simple game is a

way to reconcile political and economic considerations, In the simple

example illustrated in Figure (1c) as a modification of (1a), the rule

is precisely correct for not merely turning the system for votes. But

this, of course, is what is called for, for shares in jointly but pri-

vately held corporations. Essentially Arrow and Debreu (1954), by

distributing profits in proportion to shares held converted the voting

game into an inessential game as shown in (Id) where control voting has

no significance.

We may consider a class of games related to simple games, but

with the modification that although all losing coalitions still can ob-

tain nothing by thiemselves the winning coalitions cannot necessarily

take all. Thus, a better description of them is as control coalitions

rather than winning coalitions. Thus, a control game is decisive if

the complements of all control coalitions are losing, or can guarantee

ai 7
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themselves zero, while the complements of all losing coalitions are con-

trol coalitions. Thus, the game in Figure (1c) is a decisive control

game and a market game; while the unanimity game (lb) is a control game

and a market game, but not decisive.

In the remainder of this note, we raise two sets of questions;

one relatively broad, the other narrow. We limit ourselves here to

offering answers only to the second.

The first set of questions concern the relationship between the

price mechanism and the vote. We know that at least for sidepayment

games that for any market game, we can find an exchange economy which

gives rise to it, and vice versa. This does not tell us that if we start

with a model involving voting production and exchange, and show that

it is a market game that we will be able to find a price for votes.

The prices may be for a set of artificial commodities with little direct

relation to the original votes and endowments. Yet when we observe that

it is possible by introducing stockholder protection to obtain prices

for shares there seems to be a hope that by putting in the core in an

appropriate way modifying majority rule with minority protection, we

can obtain market games. Under what circumstances can we select minority

protection rules such that a price for votes can be found?

If there is no minority protection, it is highly unlikely that a

price for votes can emerge, as was shown by Shubik and Van der Heyden

(1978). Logrolling offers an exchange possibility for votes, but not

enough to produce prices.

Our second set of questions which are narrower and explicitly

technical are to some extent preliminary to the questions raised above.

We have noted that market games form an extremely special subset

- -.. ,
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of all games. The requirement for total balance is extremely strong.

In some sense simple games without veto players appear to be at the other

end of the spectrum. In particular, the simple majority voting game

appears to be about as "coreless" or as "unbalanced" as we can find.

We make this description precise below and construct, for the symmetric

case the game with the fewest balanced subgames.

It is worth noting that total unbalance is not feasible. All

one person games have cores, and for a superadditive characteristic func-

tion all two person games have cores. The first meaningful instance of

a simple majority game is for n = 3 . In economics (and in mating)

two appears to be a very special number. Markets and marriages appear

to reflect the special importance of a two-sided relationship, but al-

though in several democracies two party systems appear to be important,

in politics and voting in general the two-sided relationship does not

seem to be an important characteristic.

2. MEASURES OF DIVERGENCE FROM TOTAL BALANCE

2.1. Numbers of Coalitions

Restricting ourselves to the symmetric game, we can consider two

measures of "distance" from a market game by (1) counting the number of

coalitions of different size without cores, where we count all coalitions

of any specific size only once. Thus, in total, we examine only n

coalitions for an n-person game. Alternatively, we could count all

2n-1  coalitions; in which case surpressing the cores of coalitions of

size around n/2 becomes important.

Consider A --a class of all symmetric superadditive n-person
n

games with sidepayments. For any v E An denote
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A(v) = { < k < nicore of any k-person subgame of v is empty} . We

claim that the maximal cardinality of A(v) over An is n- [log 2n] -1

Theorem 1. Max !A(v) I = n - [log 2n] - 1 . Moreover, the maximum is
vEA

n

achieved at v0 , the generalized majority game.

Proof of Theorem 1. Let v E An be given. For any 1 < k < n denote

by 'k = vk/k , where vk = v(s) for any k person coalition S.

Choose k such that V < V for any k < k and no k > k11 k- k 11

with vk >Vk Clearly, k > n/2 , otherwise, by superadditivity

of v , V2k >Vk , a contradiction to the choice of k 1
1

Choose now k2 <k I , such that vk < k for any k < k2
and no k2 < k < k with v > v " Clearly k2 > kl/2 , otherwise,

21 k - k_

superadditivity implies v 2k > , 2k2 < kI , again a contradiction

to the choice of k2

In the same way we choose k ... , k._l, k . (Note that

kr_1 = 2 , kr = 1 and the sequence {k£} , k = 1, 2, ..., r is

uniquely defined by the game v .) We claim that:

(i) all kI- , k 2- ..., kr-person supergames have nonempty cores;

(ii) if k does not coincide with any k,. , 1 < E < r , the

core of any k-person subgame is empty.

Proof of (i). Let k£X (1 < £ < r) be given and consider any k2X-person

subgame (without loss of generality {, 2, ...,k } ). Let B be a

balanced collection of the k-person subgame with this set of players.

k 
(S

SEB S i=I SEB

iCS

ami
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where 6S  is the balancing coefficient of S

According to the choice of k , v(S)/ISI < _v for any S with

no more than k, players. Using this remark and the fact that 6 S  I
SEB

for any i , we have iES

kt  k

< - ~k =vSE S S k-- k k9i1"; 5 i~l£ £
iES

Since the last inequality holds for any balanced collection B , all

k X-person subgames are balanced. Then the Shapley-Bondareva theorem

ensures the nonemptiness of the core for all k .-person subgames.

Q.E.D.

Proof of (ii). Consider an arbitrary k , which does not coincide with

any k. , £ 1, 2, .... r , and any k-person stbgame, without loss

of generality, {1, 2, ...,k) . k does not belong to A(v) , there-

fore there exists p < k with vp > vk . Consider a set of all p-person

subsets of {1, 2, ...,k} . This collection is trivially balanced and

k v k
S=i=l S =p P i=l p

S3i

We con.;lude that this k-person subgame is nonbalanced, and by

Shapley-Bondareva theorem, the core of it is empty.

Q.E.D.

By (i) and (ii), A(v) - N-4kl, ... , k r  . Let M be such that

2M < n < 21. (M = [log2 n] .) Since k, > n/2, or k1 >n+l/2

and k9 .> kX. /2 for k = 2,..., r , it follows that r > M+I. It
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0
is easy to see that if v = v , the generalized majority game r =M.+

is achieved. Hcnce

Max IA(v) I = IA(v0)1 = n - M- 1 = n - [log 2n] - 1.
yEA

n

Q.E.D.

Now let us turn to a question of a maximal number of subgames with

the empty core over A n For any v E A denote by c(v) a number of
n n

all subgames of v with the empty core. Using notations of the proof

r
of Theorem 1, c(v)-- 2 -1- n.k . We are abl, o give the asymp-

totical estimation of Max c(v) Formally,

Theorem 2.

2 -3 nn + n , if n = 3m

Max c(v) = n _ + o(Xn) if n = 3m+l

2 3 n .

- 22/3 n + o( n ) , if n = 3m+2

31/34322/3
where x = 3,(3/2) and m is a natural number.

Let us note that if Max c(v) is achieved then n > k > n/2

k= [(k _1 +1)12] , 1 = 2, ..., r and we consider only such sequences

of k1 , k2, ..., kr In order to prove Theorem 2 we need two following

claims:

Claim 1. r (kn) 0 [(k)j , when n-*

kI
£=3 2
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Proof of Claim 1. Conzi,' the ratio

R ln/( n ) (n -k3) x ... x (n -k2 + 1)
Rk 2 k 3  (k 3 +l) x... xk 2

5 n-x

Since k3 < n/4 , x <_k 3  implies that ' > 2 if n is large

enough. Hence R > 2 4 . Note that (k( and therefore,
Z=3 i

K k3n n n) <3 k 3

and this expression converges to 0 when k- tends to

Q.E.D.

Claim 2. There exists n0  such that n > n0  implies

Min n)+ (+ = (n) + (2) n where K = [ .+2

k- k I 2 K K
k >2, k 2-1-2

In other words, minimum is achieved, when k2 = K k1 = 2K

Proof of Claim 2. We shall show that if k2 * K the above minimum

is not achieved at k 2 =k2

I) Let < K . Then > n/2 . Denote k 2 = n - S
2 1 2 n2 Deoe 2 2'

' = 2n - It is easy to check that k > n/2 . We have
1 2

n) n ( + n ) = (n + ( n Since 4k2 - n < kk +k =2k2  kl' 1 4k2-n) 2 2

(k)k + (k) (ik) + (jn) and minimum is not achieved if Z2 < K

I
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2) Now consider Z2 = K+m , where m > 2 . Then

SK!(n-K) (n-K- (n-K) and since K < n/3 + 1

for n large enough the last ratio exceeds 2. Therefore,

() + (2) < 2() < ()n <() + (n )

3) The last case k2 = K+I . We will prove that for n large enough

(n) + (n) < n+2 . It is easy enough to check that

n' (n) n -2K -14 (4+2) (4K+1-1)( n)
(K+l - ' (- 2K+2) = (K+l)(4K+2) 2K

(ne > n n-l-2K (n+2)(4K+-n)
Since K -nl 1 and 1.n (K+l) (4K+2) 4

we concluded.
Q.E.D.

Proof of Theorem 2. It follows from Claims I and 2, that

Max c (v) = 2n _ (n) (n) +o()

vEAn

There are three possible representations of n : 1) n = 3m

2) n = 3m+l ; 3) n = 3m+2 , where m is a natural number. Consider

all the cases.

Case 1. n (n~ and ()+ (2'n) = 2( n,,) =2 n2!y By

Stirlings formula the last expression is equivalent to

2/ (-,n4"F)= 3 n 1/3 2/3

S where A~ 3 (2)

*,-2 (,n_) n/3 2n 2n737(2



Case 2. (n~) on) where n -

2K2K

3 ....... (113 T

(Stirling's formula) n
ii 2 2n 2

3.-X 3-P)

2 2 1

The same computations in the Case 3 provide us the desirable formula:

(n)- . 3 n
( r~n2 2/3

This completes the proof of Theorem 2.

Q.E.D.

2.2. c-Core Measure of Distance from Total Balance

We may try for a direct measure of how much we have to add to

all coalitions to turn the original game into the "closest" totally

balanced game.

For this purpose we make use of the notion of the strong c-core

which has been introduced by Shapley and Shubik (1966). That is, the

strong c-core of game v is the set of all payoff vectors x E Rn satis-

fying x> v(S) - E for all S N
iES

Consider B , the class of all normalized symmetric superaddi-

tive n-person games. (A game v is normalized if v(i) 0 for each

.. , .*z.-. -,
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i = 1, 2, ... , n and v(N) = I .) Let v E Bn be given and let

vk E Bk be its k person subgame with k < n . We denote

Ek(V) = Min{c > Oithe strong c-core of vk is nonempty)

And now we introduce the measure of deviation from total balancedness:

n
p(v) = k(V)

Pil

0
The main result of this section is that v the generalized majority

game, is the most unbalanced one with respect to p , i.e.

0
Theorem 3. Let n > 2 . Then for any v E Bn , v * v implies

p(v) < p(v
°)

Proof. Let v E B be given. The game v determines a unique de-~n

creasing sequence of natural numbers K(v) = {k0, ki, ... krI such that
(1) k0  n+l k r = 1 and k > k£_ 1/2 for each

= 1, 2, ... , r

(2) for all i = 1, 2, ... , r , vk <v k if k < k and 'k < vk

if k <k <k

(Note that if v v0 , then 0=n+ , k = [n%.2] +1 fork0  k ~ n. £  o
£

= 1, 2, ... , r , where, by Theorem 1, r = [log2n] +1 .)

As it was shown in the proof of Theorem 1, a k-person subgame

v k of v has a nonempty core if and only if k >2 Vh  for all

1 < h < k . Therefore vk has a nonempty core if and only if k E K(v)

Thus,



15

Ck(v) = kk - v(k) - k(vk -vk) for all i = 1, 2, ... , r

and k s k < k_ 1 .

By monotonicity of v , which is implied by superadditivity, v(k) > v(k)

for k > k and hence for all 1 = 1, ..., r and k < k < k

Ek(V) < k k- v(k) = k (k-k ) Since for any v E Bn , Vk < l/k

-0 K0 )

for each k = 1, 2, ... , n and vk = 1/k for all k E K(v , the

0 -0 0
equality ck(V 0) v k(k -k) for all k9. E K(v ) and k < k < k9 _1

imply the assertion of Theorem 3 for all v E B with K(v) = K(v0)n

Therefore in order to complete the proof of the theorem, it suffices

to consider the case where K(v) does not coincide with K(v0)
1

Suppose, in negation, that there is v E Bn , such that

K(v I ) E K(v0 )  and p(v1 ) > p(v) Let p(v1 ) = Max p(v) . (Such a

maximum exists since p(.) is a continuous function over compact sub-

set of Rn .) Let m be a minimal number such that k1 * k0  (and hencem m

k 1 > k0 ). There are two possible cases:
1 1

m m+

(i) k I  - k I > k 1 - k I1
m-1 m - m m+l'

(ii) k 1 k I1 < kI - k 1

m-I m m m+l"

2 2 1k1

Case (i). Consider a game v for which v = v1 for k < k 1
an k> I 2 k k -

and 2 >= -l 2&)k for -< < k 1 . where 6 > 0
- M-l 'k (vT+l + i-i2 1 2k

is small enough so that 2 < Vkl 1 Clearly, K(v2) = 2

M-I
where k2 = k o, nd 2  -- k l - 1  K(v2) satisfies

wheret for * m , and k1 2

(1) and (2) since k2 > k0  k2
m - m m-i

Since p(v I ) is maximal, £k(V ) = T 1 (k -k) for all

k < k < kl'.1  and Yk - I/k 1 t 1, 2, ... , r . As k 2 Ck
9.- 9-i 1 .' k
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for all k < k and k > k we have p(v 2 ) p(v 1 )

m-1
-l km. i-Ik 

I

= k_ {k(V2 ) - k(v 1 k ((1) +6)(k-Dk) -(F+l)- (k-k-1)}
k=k k= i-

Vl (- k1 1 -1 1
- l (k-km1 ) > (k-1 -(km -1-k) - Vk (-k l) >

m-+l k m+l
> m(+)' 1 _ 2km1

> (k+1) -1 (ki 1  
2k i nk ) , which is, by (i), positive. Therefore,

2 1 1
p(v ) > p(v I ) , a contradiction to the maximality of vI , which com-

pletes a consideration of Case (i).

Case (ii). Assume that km k > A =k k Let k k + 6
m M M m rn+1

and define a game v3  as follows:

3 1 1V vk if k < or k > km

= k (Vl1 +
L)k, if k < k < k 1  where A > 0 is small

m enough so that v2 < v 1
k- k

m-1

where k 3 = k 1 if L m and k 3  Clearly kV ) =E(v3) if

1 1 -1 1

< k or k > kIM1 Therefore p(v ) -p(v I  I {Ck (V3 ) -Ck (vl)
-- -- ll-1 "k=V"

-3 -1But it is easy to see that, sinceT > v I it follows that

k
wh(V3 ) > e (v i )  for I < h < A and Calh(V 3  ) > ,h(V I ) for

k. m~

1 < h < k I  k Therefore p(v ) > p(v again a contradiction

mk~k

- -- 3--1

which completes the proof of the theorem . 1flwt
Q.E.D.

A"I
3-, 1 3_ .,- % . .. 1 -£j$~(V > £1 ( ) or 1< h< ~and ~Ahv )> e~(v fo
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